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  Abstract- We present two algorithms for the efficient 
placement of sensors in a sensor field. The proposed approach is 
aimed at optimizing the number of sensors and determining their 
placement to support distributed sensor networks. The 
optimization framework is inherently probabilistic due to the 
uncertainty associated with sensor detections. The proposed 
algorithms address coverage optimization under the constraints 
of imprecise detections and terrain properties. These algorithms 
are targeted at average coverage as well as at maximizing the 
coverage of the most vulnerable grid points. The issue of 
preferential coverage of grid points (based on relative measures 
of security and tactical importance) is also modeled. 
Experimental results for an example sensor field with obstacles 
demonstrate the application of our approach. 

Keywords-Ad hoc wireless sensor networks; preferential coverage; 
obstacles; sensor detection; sensor field coverage; terrain modeling. 

I.   INTRODUCTION  

Sensor placement directly influences resource management 
and the type of back-end processing and exploitation that must 
be carried out with sensed data in distributed sensor networks. 
A key challenge in sensor resource management is to 
determine a sensor field architecture that optimizes cost, and 
provides high sensor coverage, resilience to sensor failures, 
and appropriate computation/communication trade-offs. 
Intelligent sensor placement facilitates the unified design and 
operation of sensor/exploitation systems, and decreases the 
need for excessive network communication for surveillance, 
target location and tracking. Sensor placement therefore forms 
the essential “glue” between front-end sensing and back-end 
exploitation. 

In this work, we present a resource-bounded optimization 
framework for sensor resource management under the 
constraints of sufficient grid coverage of the sensor field. The 
proposed approach offers a unique “minimalistic” view of 
distributed sensor networks in which a minimum number of 
sensors are deployed, and they transmit/report a minimum 
amount of sensed data. Intelligent sensor placement ensures 
that the ensemble of this data contains sufficient information 
for the data processing center to subsequently query a small 
number of sensors for detailed information, e.g. imagery and 
time series data. The proposed approach is aimed at 
optimizing the number of sensors and their placement for 
network provisioning and to support such minimalistic sensor 
networks.  

      Sensor deployment must take into account the nature of 
the terrain, for example obstacles such as buildings and trees 
in the line of vision for IR sensors, uneven surfaces and 
elevations for hilly terrains, redundancy due to the likelihood 
of sensor failures, and the power needed to transmit 
information between deployed sensors and between a 
deployed sensor and the cluster head. 

We represent the sensor field as a grid (two- or three-
dimensional) of points. A target in the sensor field is therefore 
a logical object, which is represented by a set of sensors that 
see it. An irregular sensor field is modeled as a collection of 
grids. The optimization framework is however inherently 
probabilistic due to the uncertainty associated with sensor 
detections. We propose two algorithms for sensor placement 
that address coverage optimization under the constraints of 
imprecise detections and terrain properties. The issue of 
preferential coverage of grid points (based on relative measures 
of security and tactical importance) is also modeled. We limit 
our discussion in this paper to fixed sensors. Experimental 
results for an example sensor field with obstacles demonstrate 
the application of our approach. 

  As sensors are used in greater numbers for field operation, 
efficient deployment strategies become increasingly important. 
Related work on terrain model acquisition for motion planning 
has focused on the movement of a robot in an unexplored 
“sensor field” [1]. While knowledge of the terrain is vital for 
surveillance, it does not directly solve the sensor placement 
problem. Self-deployment for mobile sensors based on the 
notion of potential fields is presented in [8]. However, self-
deployment does not provide a solution for case of static 
sensors that need to be deployed in a specific configuration for 
applications such as environmental monitoring. A related 
problem in wireless sensor networks is spatial localization [9]. 
Localization is particularly important when sensors are not 
deployed deterministically e.g., when sensors are thrown from 
airplanes in a battlefield, and for underwater sensors that might 
move due to drift. A number of techniques for both fine and 
coarse-grained localization have been proposed recently [6, 
10]. 

The problem of determining the coverage provided by a 
given placement of sensors has also been discussed in the 
literature [7]. Sensor placement on two- and three-dimensional 
grids has been formulated as a combinatorial optimization 
problem, and solved using integer linear programming [2, 3]. 
This approach suffers from two main drawbacks. First, 

0-7803-7700-1/03/$17.00 (C) 2003 IEEE 1609



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
2003 2. REPORT TYPE 

3. DATES COVERED 
  -   

4. TITLE AND SUBTITLE 
Sensor Placement for Effective Coverage and Surveillance in Distributed
Sensor Networks 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Defense Advanced Research projects Agency,3701 North Fairfax 
Drive,Arlington,VA,22203-1714 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
The original document contains color images. 

14. ABSTRACT 
see report 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

18. NUMBER
OF PAGES 

6 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



 

computational complexity makes the approach infeasible for 
large problem instances. Second, the grid coverage approach 
relies on “perfect” sensor detection, i.e. a sensor is expected to 
yield a binary yes/no detection outcome in every case. There is 
inherent uncertainty associated with sensor readings, hence 
sensor detections must be modeled probabilistically. 

 There exists a close resemblance between the sensor 
placement problem and the art gallery problem (AGP) 
addressed by the art gallery theorem [4]. The AGP problem can 
be informally stated as that of determining the minimum 
number of guards required to cover the interior of an art 
gallery. Our sensor placement problem differs from AGP in 
two fundamental ways: (a) the sensors can have different 
ranges, unlike in AGP where guards are assumed to have 
similar capabilities, and (b) unlike the intruder detection by 
guards, sensor detection outcomes are probabilistic. Other 
related work includes the placement of a given number of 
sensors to reduce communication cost [5], and optimal sensor 
placement for a given target distribution . 

The remainder of the paper is organized as follows. In 
Section 2, we describe our sensor detection model as well as 
our approach for modeling the terrain. Section 3 describes two 
procedures for placing sensors to provide adequate coverage of 
the sensor field. We also show how the placement algorithms 
can be augmented to provide differential coverage of grid 
points (based on relative measures of security and tactical 
importance). Section 4 presents experimental results for various 
problem instances. A comparison is presented with random 
sensor placement and uniform placement of sensors to 
highlight the effectiveness of the proposed algorithms. Finally, 
Section 5 concludes the paper and describes directions for 
future work. 

II.    SENSOR AND TERRAIN MODEL 
Sensor placement requires accurate yet computationally 

feasible sensor detection models. In this work, we first assume 
that the sensor field is made up of grid points. The granularity 
of the grid (distance between consecutive grid points) is 
determined by the accuracy with which the sensor placement is 
desired.  

We assume that the probability of detection of a target by a 
sensor varies exponentially with the distance between the target 
and the sensor. This model is illustrated in Figure 1. A target at 
distance d from a sensor is detected by that sensor with 
probability e−αd. The parameter α can be used to model the 
quality of the sensor and the rate at which its detection 
probability diminishes with distance. Clearly, the detection 
probability is 1 if the target location and the sensor location 
coincide. For every two grid points i and j in the sensor field, 
we associate two probability values: (i) pij, which denotes the 
probability that a target at grid point j is detected by a sensor at 
grid point i; (ii) pji, which denotes the probability that a target 
at grid point i is detected by a sensor at grid point j. In the 
absence of obstacles, these values are symmetric, i.e. pij =  pji. 
However, we will show later in this section that these values 
need not be equal in the presence of obstacles. 

Note that the choice of a sensor detection model does not 
limit the applicability of the placement algorithm in any way. 

The detection model is simply an input parameter to the 
placement algorithm. Alternative detection models can 
therefore be considered without requiring a major redesign of 
the placement algorithm. 

We next explain how obstacles in the terrain are modeled in 
this framework. A number of sensors, e.g. IR cameras, require 
a target to lie in their line of sight. Obstacles cause occlusion 
and render such sensors ineffective for detection.  We assume 
that some knowledge of the terrain is acquired prior to sensor 
placement, e.g. through satellite imagery. The obstacles are 
then modeled by altering the detection probabilities for 
appropriate pairs of grid points. For example, if an object such 
as a building or foliage is present in the line of sight from grid 
point i to grid point j, we set pij = 0. Partial occlusion can also 
be modeled by setting a non-zero, but small, value for the 
detection probability. 

      As an example, consider the two obstacles in the sensor 
field of Figure 2. The grid points in this figure are numbered 
from 1 to 16. If we assume that these obstacles are symmetric, 
then they cause p36, p63, p27, p72, and a number of other 
detection probabilities to be rendered zero. It is 
straightforward to determine if for any two grid points i and j, 
pij is affected by an obstacle. Each grid point is associated with 
a pair of (x,y) coordinates in the plane. Similarly, an obstacle 
also has associated (x,y) coordinates. We determine the 
equation of the straight line connecting i and j. If the 
coordinate of the obstacle satisfies this equation, the 
probability pij is set to zero.  

      In many practical instances, obstacles in the sensor field 
are asymmetric, i.e. pij =0 does not imply that pji =0. This can 
occur for instance in the case of a hilly terrain. A sensor at 
lower elevation is unlikely to detect a target at higher 
elevation, but a sensor at higher elevation can detect a target at 
lower elevation. This scenario can be easily modeled in our 
framework by using appropriate detection probability values. 

                           Sensor

d1
d2
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                    Figure 1. Sensor detection model. 
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                      Figure 2: Obstacles in a sensor field.  

III. SENSOR PLACEMENT ALGORITHMS 
In this section, we describe our algorithms for sensor 

placement for a given set of detection probabilities in a sensor 
field (both with and without obstacles). The goal of the sensor 
placement algorithms is to determine the minimum number of 
sensors and their locations such that every grid point is covered 
with a minimum confidence level. We use the term coverage 
threshold to refer to this confidence level. The coverage 
threshold T is provided as an input to the placement algorithm. 
Our objective is to ensure that every grid point is covered with 
probability of at least T. 

The first procedure MAX_AVG_COV attempts to maximize 
the average coverage of the grid points. The second procedure 
MAX_MIN_COV attempts to maximize the coverage of the grid 
point that is covered least effectively. 

     We begin by generating a sensor detection matrix D = [pij] 
for all pairs of grid points in the sensor field. For an n by n 
grid, we have a total of n2 grid points, hence the matrix D 
consists of  n2 rows and n2 columns, and a total of n4 elements.  

     From the sensor detection matrix D, we determine the miss 
probability matrix M = mij, where mij = 1− pij. We do not 
directly use D in our sensor placement algorithm. Instead, we 
use the entries in the miss probability matrix M. Both the 
sensor placement algorithms use a greedy heuristic to 
determine the best placement of one sensor at a time. The 
algorithms are iterative, and they place one sensor in the sensor 
field during each iteration. They terminate either when a preset 
upper limit on the number of sensors is reached, or sufficient 
coverage of the grid points is achieved. 

      We define the vector M* = (M1, M2,…, MN) to be the set of 
miss probabilities for the N = n2 grid points in the sensor field. 
An entry Mi in this vector denotes the probability that grid 
point i is not collectively covered by the set of sensors placed 
in the sensor field. At the start of the placement algorithm, the 
vector M is initialized to the all-1 vector, i.e. M* = (1, 1,…, 1). 
Each sensor placed in the sensor field decreases one or more 
entries in this vector. The placement of a sensor also decreases 
the order of the miss probability matrix by one as the 
corresponding row and column in the miss probability matrix 
become redundant. The pseudocode steps of the first sensor 
placement algorithm MAX_AVG_COV are outlined in Figure 3. 
Let Mmin = 1−T be the maximum value of the miss probability 
that is permitted for any grid point. 

                      Figure 3: Pseudocode for the MAX_AVG_COV algorithm. 

      Note that the effectiveness of grid coverage due to an 
additional sensor is measured in the MAX_AVG_COV 
procedure by the Σi parameter. This approach attempts to 
evaluate the global impact of an additional sensor by summing 
the changes in the miss probabilities for the individual grid 
points. We next show how the proposed approach for sensor 
placement facilitates preferential coverage of grid points. In a 
typical military force protection or civilian defense scenario, 
certain installations must be given additional protection. Such 
installations might include nuclear power plants, command 
headquarters, or civilian administration centers. 

      In order to model preferential coverage, we assign a 
different protection probability pri to each grid point i. The 
miss probability threshold for grid point i is then expressed as 
Mi

min = 1−pri. The procedure MAX_AVG_COV is modified 
such that the termination criterion of the repeat/until loop is 
based on checking that the individual miss probability 
threshold of each grid point has been reached. 

   An alternative method for sensor placement is to place a 
sensor at each iteration at the grid point with minimum 
coverage. (The first sensor is placed randomly in the grid.) The 
coverage at every grid point is then calculated and the next 
sensor is placed at the point of minimum coverage in the grid. 
This process continues until either all the sensors have been 
placed or a pre-determined threshold on the coverage is 
exceeded. The pseudocode steps of the sensor placement 
algorithm MAX_MIN_COV are outlined in Figure 4.  

The computational complexity for both MAX_AVG_COV 
and MAX_MIN_COV algorithms is O(kN) where k is the 
number of sensors required for a given coverage threshold. 
Since k is not known a priori, we use N as an upper bound on k 
and obtain the computational complexity of O(N2 ). 

    The pseudocode descriptions for both MAX_AVG_COV and 
MAX_MIN_COV algorithm make the implicit assumption that 
sensor detections are independent, i.e. if a sensor detects a 
target at a grid point with probability p1, and another sensor 
detects the same target at that grid point with probability p2, 
then the miss probability for the target is (1− p1)(1− p2).  

    Procedure MAX_AVG_COV (M, M*, Mmin) 
begin 
num_sensors := 1; 
repeat 
  for i := 1 to N do 
     Σi = mi1 +mi2 + … + miN ; 
   Place sensor on grid point k such that Σk is minimum; 
   for i := 1 to N do 
   Mi=Mimki; /* Update miss probabilities due to 

sensor on grid point k */ 
     Delete k th row and column from the M matrix 
    num_sensors := num_sensors + 1; 
until Mi <  Mmin for all i, 1 ≤ i ≤ N  
         or num_sensors > limit; 
end 
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             Figure 4: Pseudocode for the MAX_MIN_COV algorithm. 

We have thus far considered the coverage of only the grid 
points in the sensor field. In order to provide robust coverage of 
the sensor field, we also need to ensure that the region that lies 
between the grid points is adequately covered, i.e., every non-
grid point has a miss probability less than the threshold Mmin.  
Consider the four grid points in Figure 5 that lie on the four 
corners of a square. Let the distance between these grid points 
be d∗. The point of intersection of the diagonals of the square is 
at distance d∗/√2 from the four grid points. The following 
theorem provides a sufficient condition under which the non-
grid points are adequately covered by the MAX_AVG_COV and 
MAX_MIN_COV algorithms.  

Theorem 1: Let the distance between the grid point P1 and a 
potential sensor location P2 be d. Let the distance between 
adjacent grid points be d∗.  If a value of d + d∗/√2 is used to 
calculate the coverage of grid point P1 due to a sensor at P2, 
and the number of available sensors is adequate, the miss 
probability of all the non-grid points is less than the threshold 
Mmin when the algorithms MAX_AVG_COV and 
MAX_MIN_COV terminate. 

Proof: Consider the four grid points in Figure 5. The center of 
square, i.e., the point of intersection of diagonals, is at a 
distance of d∗/√2 from each of the four grid points. Every 
other non-grid point is at a shorter distance (less than d∗/√2) 
from at least one of the four grid points.  Thus if a value of d + 
d∗/√2 is used to determine coverage in the MAX_AVG_COV 
and MAX_MIN_COV algorithms, we can guarantee that every 
non-grid point is covered with a probability that exceeds 1-
Mmin. 

       In order to illustrate Theorem 1, we consider an 8 by 8 
grid with α = 0.6 and Mmin = 0.4. We use Theorem 1 and the 
MAX_AVG_COV algorithm to determine sensor placement 
and to calculate the miss probabilities for all the centers of the 
squares. The results shown in Figure 6 indicate that the miss 
probabilities are always less than the threshold Mmin, thereby 
ensuring adequate coverage of the non-grid points. 
 
 
 

 

                       
         
 
 
 
 
 
 
 
         Figure 5:  Illustration of the proof of Theorem 1. 
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Figure 6: The miss probabilities for the non-grid points that are centers of the 
squares for an 8 by 8 grid with α = 0.6 and Mmin = 0.4. 

IV. EXPERIMENTAL RESULTS 

  In this section, we present experimental results for the two 
sensor placement algorithms. We first determine sensor 
placement to minimize the number of sensors for a given 
coverage threshold. We compare MAX_AVG_COV and 
MAX_MIN_COV to a random placement of sensors as well as 
to uniform placement. We use Theorem 1 throughout to 
guarantee that all non-grid points are adequately covered. Our 
first observation is that if there are no obstacles in the sensor 
field and all sensors are considered identical, random 
placement is as effective as MAX_AVG_COV. This is hardly 
unexpected since the regularity of these problem instances 
renders them especially amenable for random placement. We 
next show that random placement performs significantly worse 
when the sensor field contains obstacles and when preferential 
coverage is desired. 

Case Study 1 

     Our first case study was for a 2-dimensional grid with 8  
points in each dimension for a total of 64 grid points. We used 
α = 0.6 in calculating the detection probability values for this 
example. Two obstacles were deterministically placed in the 
sensor field at specific locations. The results plotted in Figure 7 
show that both MAX_AVG_COV and MAX_MIN_COV 
algorithms outperform random placement for nearly all values 
of the miss probability threshold Mmin. For very small values of 
the threshold, random placement performs better then 
MAX_AVG_COV but MAX_MIN_COV still outperforms 
random placement.  

Procedure MAX_MIN_COV (M, M*, Mmin) 
begin 
Place first sensor randomly 
num_sensors := 1; 
repeat 
     for i := 1 to N do 
     Mi =Mimki;   /* Update miss probabilities due to   sensor 

on grid point k */ 
 Place sensor at grid point k such that Mk   is max 

     Delete kth row and column from the M matrix 
    num_sensors := num_sensors + 1; 
until Mi <  Mmin for all i, 1 ≤ i ≤ N  

         or num_sensors > limit; 

end 

d*

d* 

d* 

d* 

d* /√ 2 
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Figure 7: Results for Case Study 1 (8 by 8 grid with two obstacles). 
 
Case Study 2 

    Our second case study was based on a 2-dimensional grid 
with 20 grid points in each dimension for a total of 400 grid 
points. We used α = 0.5 in calculating the detection probability 
values for this example. A number of random obstacles were 
incorporated into the model, as a result of which a significant 
number of detection probabilities were either made zero or 
considerably reduced compared to the values obtained from our 
detection model. The results shown in Figure 8 indicate that 
both MAX_AVG_COV and MAX_MIN_COV outperform 
random placement of sensors. The number of sensors in 
MAX_AVG_COV is especially small, due in part to the 
locations of the obstacles in the case study. A number of grid 
points in this example yield a very small value of Σi     when a 
sensors is placed at these grid points using MAX_AVG_COV 
(Figure 3). As a result, the coverage exceeds the threshold T = 
1−Mmin with a small number of sensors. The MAX_MIN_COV 
algorithm is unable to exploit this special property of the 
problem instance hence it requires more sensors.  
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Figure 8: Results for Case Study 2 (20 by 20 grid with randomly placed 
obstacles).  

Case Study 3 

       In our third case study, we again used a 2-dimensional grid 
with 8 grid points in each dimension for a total of 64 grid 
points, and we set α to 0.6. In this case, we placed eight 
obstacles in the sensor field at specific locations with the 

detection probability set to zero when any obstacle was on the 
straight line between the two sensors.  We repeat this case 
study for five different placement of obstacles and averaged the 
results.  

    The results are shown in Figure 9. Note that y-axis in this 
case shows the average number of sensors required for five 
different cases of obstacle placement. MAX_AVG_COV 
outperforms random placement for smaller values of Mmin, and 
is no worse for larger values of Mmin. However, 
MAX_MIN_COV outperforms both random deployment and 
MAX_AVG_COV. 

    Case Study 4 

 In our fourth case study, we considered an 8 by 8 grid with 
four preset obstacles. We used α = 0.6 in calculating the 
detection probability values. In addition, we considered 
preferential coverage in this case study. A subset of grid points 
(marked in Figure 10) was required to be covered with a low 
miss probability threshold Mmin = 0.01. The threshold for the 
other grid points in the sensor field was varied to determine 
the number of sensors needed for random placement and by 
the procedure. The results in Figure 11 show that  
MAX_AVG_COV outperforms random placement for smaller 
values of the (variable) miss probability while 
MAX_MIN_COV outperforms both the other deployment 
strategies for small values of miss probability. 
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Figure 9: Average results for Case Study 3 (8 by 8 grid with 8 obstacles and 5 
different variations of obstacle placement).  
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            Figure 10: Preferential coverage in sensor field for Case Study 4. 

1613



 

0

10

20

30

40

50

60

70

0 0.1 0.2 0.3 0.4 0.5 0.6
Miss Probability threshold M min

N
um

be
r o

f s
en

so
rs

MAX_MIN_COV MAX_AVG_COV Random Placement

Figure 11: Results for Case Study 4 (8 by 8 grid with four obstacles and 
preferential coverage). 
 
Case Study 5 

      We next assumed that we are given a fixed number of 
sensors that are to be deployed using MAX_MIN_COV, 
MAX_AVG_COV, and random placement. We also compared 
these algorithms to the strategy of uniform (evenly-spaced) 
deployment of sensors. We considered a 10 by 10 grid with α 
= 0.5 and no obstacles.  

 The miss probability for the grid point with the minimum 
coverage is shown in Figure 12. Uniform placement performs 
better than random placement for most cases. The 
MAX_MIN_COV algorithm outperforms the other three 
placement strategies. The results also show that  
MAX_AVG_COV significantly outperforms random placement 
for smaller values of the miss probability.  
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 Figure 12: Results for Case Study 5 

V. CONCLUSIONS 

 We have formulated an optimization problem on sensor 
placement, wherein a minimum number of sensors are 
deployed to provide sufficient coverage of the sensor field. 
This approach offers a unique “minimalistic” view of 
distributed sensor networks in which a minimum number of 
sensors are deployed and sensors transmit/report a minimum 
amount of sensed data.  

  We have presented polynomial-time algorithms to 
optimize the number of sensors and determine their placement 
to support such minimalistic sensor networks. The proposed 
algorithms address coverage optimization under constraints of 
imprecise detections and terrain properties. The issue of 
preferential coverage of grid points (based on relative 
measures of security and tactical importance) has also been 
modeled. Several case studies for example sensor fields with 
obstacles and preferential coverage show that the proposed 
algorithms significantly outperform random and uniform 
placement of sensors. 

 We are currently extending this work to the case where the 
observable domain for a sensor is defined by minimum and 
maximum ranges and an angular width. Also, we are 
investigating mobile sensors and obstacles. Finally, we are 
examining how in addition to determining a sensor location in 
each iteration, our algorithm can also determine an appropriate 
sensor from a set of candidate sensors of the same modality. 
This work is expected to pave the way for an integrated 
framework for sensor placement that incorporates power 
management and fault tolerance. 
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